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Abstract. In evaluating new high-speed network interfaces, the usual metrics of 
latency and bandwidth are commonly measured and reported. There are 
numerous other message passing characteristics that can have a dramatic effect 
on application performance that should be analyzed when evaluating a new 
interconnect. One such metric is overhead, which dictates the networks ability 
to allow the application to perform non-message passing work while a transfer 
is taking place. A method for measuring overhead, and hence calculating 
application availability, is presented. Results for several next-generation 
network interfaces are also presented. 
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1 Introduction 

Scaling efficiency of parallel applications in many instances depends on the ability to 
overlap communication with computation. If there is sufficient computation to 
overlap with communication, the application becomes insensitive to the bandwidth 
provided by the network. Overlap is also beneficial for inherently communication 
bound codes. In this instance the overhead of preparing the next messages can be 
overlapped with the transmission of the messages already in the send queue. In MPI 
application codes, the non-blocking send and receive calls are the primary means of 
achieving overlap. Unlike other MPI communication metrics, e.g. latency and 
bandwidth, there is a lack of readily available open-source micro-benchmarks that 
measure MPI overhead for non-blocking calls. This paper presents a method for 
measuring overhead and application availability and then applies this method to 
                                                         
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin 
Company, for the United States Department of Energy's National Nuclear Security 
Administration under contract DE-AC04- 94AL85000. 
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several current state-of-the-art high-performance network interfaces. It is not within 
the scope of this paper to explain why some interconnects and protocols provide low 
overhead and high availability. 

2 Method 

There are multiple methods an application can use to overlap computation and 
communication using MPI. The method assumed by this paper is the post-work-wait 
loop using the MPI non-blocking send and receive calls, MPI_Isend() and 
MPI_Irecv(), to initiate the respective transfer, perform some work, and then wait for 
the transfer to complete using MPI_Wait(). This method is typical of most 
applications, and hence makes for the most realistic measure of a microbenchmark. 
Periodic polling methods have also been analyzed [1], but that particular method only 
makes sense if the application knows that progress will not be made without periodic 
MPI calls during the transfer. Overhead is defined to be [2]: 
 

… the overhead, defined as the length of time that a processor is engaged in the 
transmission or reception of each message; during this time, the processor cannot 
perform other operations.  

 
Application availability is defined to be the fraction of total transfer time2 that the 
application is free to perform non-MPI related work.  

Application Availability = 1 – (overhead / transfer time) (1) 

Figure 1 illustrates the method used for determining the overhead time and the 
message transfer time. For each iteration of the post-work-wait loop the amount of 
work performed (work_t), which is overlapped in time with the message transfer, 
increases and the total amount of time for the loop to complete (iter_t) is measured. If 
the work interval is small, it completes before the message transfer is complete. At 
some point the work interval is greater than the message transfer time and the 
message transfer completes first. At this point, the loop time becomes the amount of 
time required to perform the work plus the overhead time required by the host 
processor to complete the transfer. The overhead can then be calculated by measuring 
the amount of time used to perform the same amount of work without overlapping a 
message transfer and subtracting this value from the loop time. 
The message transfer time is equal to the loop time before the work interval becomes 
the dominant factor. In order to get an accurate estimate of the transfer time, the loop 
time values are accumulated and averaged, but only those values measured before the 
work interval starts to contribute to the loop time. These values used in the average 
calculation are determined by comparing the iteration time to a given threshold 
(base_t). This threshold must be set sufficiently high to avoid a pre-mature stop in the 

                                                         
2 Per the MPI non-blocking call definitions, the MPI_Wait() call only signifies that for a send 

the buffer can be reused and for a receive the data can be accessed in the receive buffer [3]. 
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accumulation of the values used for the average calculation, but not so high as to use 
values measured after the work becomes a factor. The method does not automatically 
determine the threshold value. It is best to determine it empirically for a given system 
by trying different values and observing the results in verbose mode. A typical value 
is 1.02 to 1.05 times the message transfer time. 
Figure 1 also shows an iteration loop stop threshold (iter_t). This threshold is not 
critical and can be of any value as long as it is ensured that the total loop time is 
significantly larger than the transfer time. A typical value is 1.5 to 2 times the transfer 
time. In theory, the method could stop when the base_t threshold is exceeded, but in 
practice it has been found that this point can be too close to the knee of the curve to 
provide a reliable measurement. In addition, it is not necessary to calculate the work 
interval without messaging until the final sample has been taken. 

 
Fig. 1. A conceptual illustration of the post-work-wait loop time (iter_t) of a given message 
size for each iteration of the algorithm, with the work performed (work_t) increasing for each 
iteration. The message transfer time calculation threshold (base_t) and the iteration stop 
threshold (iter_t) are also shown along with the point at which the overhead calculation is 
taken. 

3 Platforms 

Overhead and availability was measured on a variety of platforms, summarized in 
Table 1. All of the platforms except Red Storm are Linux clusters using the respective 
vendor’s commercial software stacks. The Thunderbird cluster’s MPI software stack 
has been modified and parameters have been set to reduce the memory required by 
the MPI stack at a scale of several hundred to a thousand processes. These 
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modifications do affect the real-world application performance, but it is unknown 
how those modifications affect the MPI overhead microbenchmark used in this 
analysis. The Red Storm platform uses the Catamount lightweight kernel [4], with 
low-level communications implemented using the Portals API [5]. All of the 
platforms use MPICH 1.x for their implementation of MPI, although several of these 
implementations have been optimized for their respective network interface.  In 
particular, many vendors have optimized the collective communication routines. The 
Quadrics software stack uses a patched kernel, which allows optimizations benefiting 
overhead and host availability performance. 

Table 1. Overview of Test Platforms 

 Red Storm Thunderbird CBC-B Odin Red Squall 
Interconnect Seastar 1.2 InfiniBand InfiniBand Myrinet 10G QsNetII 
Manufacturer Cray Cisco/Topspin PathScale Myricom Quadrics 
Adaptor Custom PCI-Express 

HCA 
InfiniPath Myri-10G Elan4 

Host Interface HT 1.0 PCI-Express HT 1.0 PCI-Express PCI-X 
Programmable 
coprocessor 

Yes No No Yes Yes 

MPI MPICH-1 MVAPICH InfiniPath MPICH-MX MPICH 
QsNet 

 

4 Results 

From a practical perspective, application availability is usually not a concern for small 
message sizes, as there is little to be gained trying to overlap computation with 
communication when transfer times are relatively small. Most applications will only 
try to overlap computation when they know the message size is sufficiently large. 
However, as an academic exercise, it still may be interesting to view availability for a 
small message as it provides information on how an interface’s characteristics change 
at a protocol boundary, such as the switch from a short message protocol to a large 
message protocol. If an application writer is trying to optimize to a given platform, 
he/she may want to know where the protocol boundaries are and modify the code to 
better suit the platform. Overlap may also be beneficial to codes that need to send 
multiple small messages at a time. In this case, overlap allows preparation of the next 
message to be put in the queue while the messages already in the queue are being 
transmitted. However, this is the message throughput metric and is not within the 
scope of this study. 
Figure 2 illustrates the MPI_Isend() overhead as a function of message size for the 
platforms tested3. Figure 3 shows application availability. The overhead for the Red 

                                                         
3 Note that this figure uses a logarithmic axis for overhead. 
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Storm, Odin (Myri-10G) and Red Squall (Elan4) interconnects is relatively constant 
for all message sizes. As such, application availability increases with message size 
until it is nearly 100% for large message transfers. The Thunderbird (InfiniBand) and 
CBC (InfiniPath) interconnects show a high overhead for large message transfers, 
with a corresponding drop in application availability. It should be noted that the 
InfiniPath network has a relatively low overhead for small transfers, which allows for 
that interconnect to achieve its high, advertised message throughput rate. 

 
Fig. 2. Overhead as a function of message size for MPI_Isend(). 
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Fig. 3. Application availability as a function of message size for MPI_Isend(). 

MPI receive performance is charted in Figures 4 and 5. In general, receive 
performance is similar to the send performance for all of the interconnects tested. The 
Odin (Myri-10G) cluster does exhibit a more noticeable drop in application 
availability until the 32K byte message size, which is presumably a protocol 
boundary. After this point availability increases to an asymptotic value of 100%. 

 
Fig. 4. Overhead as a function of message size for MPI_Irecv(). 
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Fig. 5. Application availability as a function of message size for MPI_Irecv(). 

5 Related Work 

A significant amount of prior work has been done to measure and study the effect of 
overhead on application performance [1], [6], [7], [8] and [9]. Lawry [1] analyzes 
application availability, but the analysis and results are for a fixed message size and 
the results are a function of the polling interval. The other previous work does not 
quantify the overhead as a function of message size, but rather looks at its effect on 
application performance.  An additional contribution of this paper is a comparison of 
overhead results for relatively new networking technologies, such as Red Storm’s 
SeaStar, Pathscale’s InfiniPath, and Myricom’s Myri-10G. 

6 Conclusion 

Simple ping-pong micro-benchmarks do not accurately capture all of the capabilities 
of a high-performance network.  Host overhead and the ability to overlap computation 
with communication are important performance characteristics that can have a direct 
impact on an application’s scalability. Two networks that have similar latency and 
bandwidth performance can vary significantly in their ability to provide overlap. 
This paper presented a method for measuring overhead and application availability for 
high-speed networks using MPI and then applied the method to five test platforms, 
each with a different network interface. Performance for MPI send and MPI receive 
operations was presented. In general, the send and receive characteristics for a given 
interconnect were similar. The Red Storm, Odin (Myri-10G) and Red Squall (Elan4) 
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platforms demonstrated a relatively small overhead as a function of message size, and 
thus showed high application availability for all message sizes. The CBC (InfiniPath) 
platform demonstrated excellent small message overhead, but for large messages 
overhead increased linearly with message size and application availability was very 
low. The Thunderbird (InfiniBand) cluster demonstrated good small message 
overhead, but like the CBC cluster large message overhead is high and application 
availability is low. 

7 Future Work 

It is the intent of the authors to make the source to the code used in this study 
generally available and downloadable from an open web site, with the hope that this 
will allow overhead and application availability to become a common micro-
benchmark used in the evaluation of interconnects. We also expect that this will 
encourage contributions from the community to make the code more robust and 
accurate. 
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